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Abstract
Software-defined networks (SDNs) are a new kind of network
architecture in which a controller machine manages a distributed
collection of switches by instructing them to install or uninstall
packet-forwarding rules and report traffic statistics. The recently
formed Open Networking Consortium, whose members include
Google, Facebook, Microsoft, Verizon, and others, hopes to use
this architecture to transform the way that enterprise and data center
networks are implemented.

In this paper, we define a high-level, declarative language, called
NetCore, for expressing packet-forwarding policies on SDNs. Net-
Core is expressive, compositional, and has a formal semantics.
To ensure that a majority of packets are processed efficiently on
switches—instead of on the controller—we present new compila-
tion algorithms for NetCore and couple them with a new run-time
system that issues rule installation commands and traffic-statistics
queries to switches. Together, the compiler and run-time system
generate efficient rules whenever possible and outperform the sim-
ple, manual techniques commonly used to program SDNs today. In
addition, the algorithms we develop are generic, assuming only that
the packet-matching capabilities available on switches satisfy some
basic algebraic laws.

Overall, this paper delivers a new design for a high-level net-
work programming language; an improved set of compiler algo-
rithms; a new run-time system for SDN architectures; the first for-
mal semantics and proofs of correctness in this domain; and an
implementation and evaluation that demonstrates the performance
benefits over traditional manual techniques.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages
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1. Introduction
A network is a collection of connected devices that route traf-
fic from one place to another. Networks are pervasive: they con-
nect students and faculty on university campuses, they send pack-
ets between a variety of mobile devices in modern households,
they route search requests and shopping orders through data cen-
ters, they tunnel between corporate networks in San Francisco
and Helsinki, and they connect the steering wheel to the drive
train in your car. Naturally, these networks have different pur-
poses, properties, and requirements. To service these requirements,
companies like Cisco, Juniper, and others manufacture a variety
of devices including routers (which forward packets based on IP
addresses), switches (which forward packets based on MAC ad-
dresses), NAT boxes (which translate addresses within a network),
firewalls (which squelch forbidden or unwanted traffic), and load
balancers (which distribute work among servers), to name a few.

While each of these devices behaves differently, internally they
are all built on top of adata planethat buffers, forwards, drops,
tags, rate limits, and collects statistics about packets at high speed.
More complicated devices like routers also have acontrol plane
that run algorithms for tracking the topology of the network and
computing routes through it. Using statistics gathered from the
data plane and the results computed using the device’s specialized
algorithms, the control plane installs or uninstalls forwarding rules
in the data plane. The data plane is built out of fast, special-purpose
hardware, capable of forwarding packets at the rate at which they
arrive, while the control plane is typically implemented in software.

Remarkably, however, traditional networks appear to be on
the verge of a major upheaval. On March 11th, 2011, Deutsche
Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, own-
ers of some of the largest networks in the world, announced the for-
mation of the Open Networking Foundation [19]. The foundation’s
proposal is extraordinarily simple:eliminate the control plane from
network devices. Instead of baking specific control software into
each device, the foundation proposes a standard protocol that a
separate, general-purpose machine called acontroller can use to
program and query the data planes of many cooperating devices.
By moving the control plane from special-purpose devices onto
stock machines, companies like Google will be able to buy cheap,
commodity switches, and write controller programs to customize
and optimize their networks however they choose.

Networks built on this new architecture, which arose from ear-
lier work on Ethane [4] and 4D [10], are now commonly referred to
asSoftware-Defined Networks(SDNs). Already, several commer-
cial switch vendors support OpenFlow [17], a concrete realization
of the switch-controller protocol required for implementing SDNs,
and researchers have used OpenFlow to develop new network-wide
algorithms for server load-balancing, data center routing, energy-
efficient network management, virtualization, fine-grained access
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control, traffic monitoring, fault tolerance, denial of service detec-
tion, host mobility, and many others [8, 12–14, 18, 26].

Now the obvious question is: Why should programming lan-
guage researchers, and the POPL community in particular, care
about these developments? The answer is clear: Some of our most
important infrastructure—our networks—will soon be runningan
entirely new kind of program. Using our experience, principles,
tools, and algorithms, our community has a unique opportunity to
define the languages these programs will be written in and the in-
frastructure used to implement them. We can have major impact,
and help make future networks easier to program, more secure,
more reliable, and more efficient.

As a step toward carrying out this agenda, we propose a high-
level language called NetCore, theNetwork Core Programming
Language, for expressing packet-forwarding policies. NetCore has
an intuitive syntax based on familiar set-theoretic operations that
allows programmers to construct (and reason about!) rich policies
in a natural way. NetCore’s primitives for classifying packets in-
clude exact-match bit patterns and arbitrary wildcard patterns. It
also supports using arbitrary functions to analyze packets and his-
torical traffic patterns. This feature makes it possible to describe
complicated, dynamic policies such as authentication and load bal-
ancing in a natural way, using ordinary functional programs.

Unfortunately, compiling these rich policies is challenging. On
the one hand, the controller machine has the computational power
to evaluate arbitrary policies, but the switches do not: they can
only implement simple kinds of bit matching rules. On the other
hand, directing a packet to the controller for processing incurs
orders of magnitude more latency than processing it on a switch.
Hence, despite the limited computational power of the switches, it
is critical to find ways for them to perform most packet processing.

The NetCore compiler and run-time system surmounts this chal-
lenge by analyzing programs and automatically dividing them into
two pieces: one that runs on the switches and another that runs on
the controller. Moreover, this division of labour does not occur once
at compile time; it occurs dynamically and repeatedly. Intuitively,
when a packet cannot be handled by a switch, it is redirected to
the controller. The controller partially evaluates the packet with re-
spect to the current network policy and dynamically generates new
switch-level rules that handle said packet as well as others like it.
The new rules are subsequently sent to the switches so similar pack-
ets arriving in the future are handled in the network fast path. Over
time, more and more rules are added to the switches and less and
less traffic is diverted to the controller. We call this iterative strategy
reactive specialization.

Our strategy is inspired by the idiom commonly used for SDN
applications today [12, 13, 27], in which an event-driven program
manually installs a rule to handle future traffic every time a packet
is diverted to the controller. However, many programs written man-
ually in this style use inefficient exact-match rules rather than wild-
card rules, because reasoning about the semantics of overlapping
wildcards quickly becomes very complicated—too complicated to
do by hand. Hence, our strategy improves on past work by (1) pro-
viding high-level abstractions that obviate the need for program-
mers to deal with the low-level details of individual switches, (2)
synthesizing efficient forwarding rules that exploit the capabili-
ties of modern switches including wildcard rules implemented by
ternary content-addressable memories (TCAMs), (3) automating
the process of dynamically unfolding packet-processing rules on
to switches instead of requiring that programmers craft tricky, low-
level, event-based programs manually.

To summarize: the central contribution of this paper is a frame-
work for implementing a canonical, high-level network program-
ming language correctly and efficiently. More specifically:

Controller C

Network

N1

Switch S

Network 

N2

AuthServer A

Figure 1. Example topology.

• We define the syntax and semantics for NetCore (Section 3) and
model the interaction between the NetCore run-time system and
the network in a process calculus style (Section 4). This is the
first formal analysis of how a controller platform interacts with
switches.

• We develop novel algorithms for compiling network programs
and managing controller-switch interactions at run time, includ-
ing classifier generationandreactive specialization(Section 5).

• We prove key correctness theorems (Section 6), establishing
simulation relations between our low-level, distributed imple-
mentation strategy and our high-level NetCore semantics. We
also prove an importantquiescencetheorem showing that our
implementation successfully relocates computation from the
controller onto switches.

• We describe a prototype implementation and an evaluation on
some simple benchmarks demonstrating the practical utility of
our framework (Section 7).

NetCore arose out of our previous work on Frenetic [9], an-
other high-level network programming language. Frenetic has three
main pieces: (1) an SQL-like query language for reading network
state, (2) a language for specifying packet-forwarding policies and,
(3) a functional reactive “glue” language that processes the results
of queries and generates streams of forwarding policies for the
network. NetCore replaces Frenetic’s language for expressing for-
warding policies with a significantly more powerful language that
supports processing packets usingarbitrary functions. In addition,
NetCore also contains a minimalist “query language,” as its predi-
cates can analyze traffic history.

The main contribution of this paper relative to earlier work
on Frenetic is the design of new algorithms for compiling these
rich policies and for managing the controller-switch interactions
that arise as compiled policies are executed in a network. These
algorithms handle NetCore’s new policy language, and the core
elements of Frenetic’s old policy language even better. In particular,
the NetCore compiler generates efficient switch classifiers by (1)
usingwildcard rulesthat process more packets on switches instead
of simpleexact-match rules, and (2) generating rulesproactively
(i.e., in advance of when they are needed), again to process more
packets on switches, instead of strictlyreactively(i.e., on demand).
Finally, NetCore has a formal semantics and correctness proofs for
its core algorithms, whereas Frenetic had none.

2. NetCore Overview
This section presents additional background on SDNs and NetCore,
using examples to illustrate the main ideas. For concreteness, we
focus on the OpenFlow SDN architecture [20], but we elide and
take liberty with certain inessential details. Our compiler does not
assume the specifics of the current OpenFlow platform.

OpenFlow overview. OpenFlow is based on a two-tiered archi-
tecture in which a controller manages a collection of subordinate
switches. Figure 1 depicts a simple topology with a controllerC



managing a single switchS. Packets may either be processed on
switches or on the controller, but processing a packet on the con-
troller increases its latency by several orders of magnitude. Hence,
to ensure good performance, the controller typically installs aclas-
sifier consisting of a set of packet-forwardingruleson each switch.

Each forwarding rule has apatternthat identifies a set of pack-
ets, anaction that specifies how packets matching the pattern
should be processed,countersthat keep track of the number and
size of all packets processed using the rule, and an integerpriority.
When a packet arrives at a switch, it is processed in three steps:
First, the switch selects a rule whose pattern matches the packet.
If it has no matching rules, then it drops the packet, and if it has
multiple matching rules, then it picks the one with the highest pri-
ority. Second, the switch updates the counters associated with the
rule. Finally, the switch applies the action listed in the rule to the
packet. In this paper, we are concerned with two kinds of actions:
(1) a forwarding action{l1, . . . , lk}, which forwards the packet
to a set of (usually one, sometimes zero, rarely more than one)
adjacent network locationsli, where eachli may be the name of
another switch, network, or host,1 and (2) a controller actionΩ,
which forwards the packet to the controller for processing.

NetCore: A simple static forwarding policy. NetCore is a declar-
ative language for specifying high-level packet-forwarding poli-
cies. The NetCore compiler and run-time system handle the details
of translating these policies to switch-level rules and issuing com-
mands to install the generated rules on switches.

The simplest NetCore policies are specified using apredicatee
that matches some set of packets and a setS of locations to which
those packets should be forwarded. We write these policiese → S.
The simplest predicates match bits in a particular packet header
field. For example, the predicateSrcAddr:10.0.0.0/8 specifies
that the first octet of the packet’s source address must be10 (us-
ing the standard notation for expressing IP prefix patterns). More
complex predicates are built by taking the union (∪), intersection
(∩), negation (¬), or difference (∖) of simpler predicates. Analo-
gous set-theoretic operations may be used to compose more com-
plex policies from simpler policies. As an example, consider the
following policy.

SrcAddr:10.0.0.0/8 ∖ (SrcAddr:10.0.0.1 ∪ DstPort:80)
→ {Switch 1}

It states that packets from sources in subnet10.0.0.0/8 should be
forwarded to switch1, except for packets coming from10.0.0.1
or going to a destination on port80.

The first challenge in compiling a high-level language such
as NetCore to a low-level SDN framework such as OpenFlow
arises from the relative lack of expressiveness in the switch packet-
matching primitives. For instance, because switches cannot express
the difference of two patterns in a single rule, this policy needs to
be implemented using three rules installed in a particular prioritized
order: one that drops packets from10.0.0.1, another that drops all
packets going to port80, and a final rule that forwards all remaining
packets from10.0.0.0/8 to Switch 1. The following switch-
level classifier implements this policy. We write these classifiers
with the highest priority rule first. Switch-level patterns are on the
left, actions are on the right, and a colon separates the two.

SrcAddr:10.0.0.1 : {}
DstPort:80 : {}
SrcAddr:10.0.0.0/8 : {Switch 1}

Next consider a similar high-level policy to the first:

1 On real OpenFlow switches, locations are actually integerscorresponding
to physical ports on the switch; in this paper we model them symbolically.

SrcAddr:10.2.0.0/16 ∖ (SrcAddr:10.2.0.1 ∪ DstPort:22)
→ {Switch 2}

We can generate a classifier for this policy in the same way:

SrcAddr:10.2.0.1 : {}
DstPort:22 : {}
SrcAddr:10.2.0.0/16 : {Switch 2}

Now suppose that we want to generate a classifier that implements
the union of the two policies. We cannot combine the classifiers in
a simple way (e.g., by concatenating or interleaving them) because
the rules interact with each other. For example, if we were to simply
concatenate the two lists of rules, the rule that drops packets to
port 80 would incorrectly shadow the forwarding rule for traffic
from 10.2.0.0/16. Instead, we need to perform a much more
complicated translation that produces the following classifier:

SrcAddr:10.2.0.1, DstPort:80 : {},
SrcAddr:10.2.0.0/16, DstPort:80 : {Switch 2}
SrcAddr:10.2.0.1 : {Switch 1}
SrcAddr:10.2.0.0/16, DstPort:22 : {Switch 1}
SrcAddr:10.2.0.0/16 : {Switch 1,Switch 2}
SrcAddr:10.0.0.1 : {}
SrcAddr:10.0.0.0/8, DstPort:80 : {}
SrcAddr:10.0.0.0/8 : {Switch 1}

Dealing with these complexities often leads SDN programmers to
use exact-matchrules—i.e., rules that fully specify every bit in
every single header field. Exact-match rules, for instance, do not
use wildcard patterns that match many values for a single header
field, such as10.0.0.0/8, nor do they leave certain header fields
completely unconstrained. Our first implementation of Frenetic [9]
used exact-match rules exclusively because such rules were far
easier for its run-time system to reason about, particularly when
it came to composing multiple user policies.

This paper presents new, general-purpose algorithms for syn-
thesizing low-level switch classifiers that use wildcard rules to the
extent possible. These new algorithms result in far more efficient
system than the one we built in earlier work: in Frenetic’s origi-
nal exact-match architecture, many more packets wound up being
sent to the controller (suffering orders of magnitude increase in la-
tency) and many more rules had to be sent to switches. The results
of our experiments, presented in Section 7, highlight the magnitude
of these differences.

NetCore: Richer predicates and dynamic policies.The policies
presented in the previous section were relatively simple—they did
nothing besides match bits in header fields and forward packets ac-
cordingly. Such static policies can be expressed in Frenetic’s sim-
ple policy language, though they are not be implemented nearly as
efficiently as in the NetCore system. However, many applications
demand dynamic policies whose forwarding behavior depends on
complex functions of traffic history and other information. And
these richer policies cannot be implemented by simply analyzing
bits in header fields.

As an example, suppose we want to build a security application
that implements in-network authentication for the topology shown
in Figure 1. The networkN1 contains a collection of internal hosts,
N2 represents the upstream connection to the Internet,A is the
server that handles authentication for hosts inN1, and all three el-
ements are connected to each other by the switchS. Informally,
we want the network to perform routing and access control accord-
ing to the following policy: Forward packets from unauthenticated
hosts inN1 to A, from authenticated hosts inN1 to their intended
destination inN2, and fromA andN2 back toN1 (although not
fromN2 toA). This policy can be described succinctly in NetCore
as follows.



(InPort:Network 1 ∩ inspect ps auth → {Network 2})
∪ (InPort:Network 1 ∩ ¬(inspect ps auth) → {Server A})
∪ (InPort:Server A ∪ InPort:Network 2 → {Network 1})

where

ps = InPort:Server A
auth (Σ,s,p) = any (isAddr p) Σ

isAddr p (_,p’) = p.SrcAddr == p’.DstAddr

This policy uses aninspector predicateto classify traffic from
N1 as authenticated or unauthenticated. An inspector predicate
inspect e f has two arguments: a filter predicatee over the net-
work traffic history and an (almost) arbitrary boolean-valued func-
tion f . The filter predicate generates acontroller stateΣ, which is
a collection of traffic statistics, represented abstractly as a multiset
of switch-packet pairs (the switch being the place where the packet
was processed). The boolean-valued functionf receives the con-
troller state as one its arguments and may analyze it as part of its
decision-making process.

In the example above, the filter predicateps selects all traffic
coming from the authentication server. In this idealized example,
we will treat an entity sending a packetp as authenticated if the
authentication server has ever sent it a packet at any point in the
past. The functionauth takes three arguments: the controller state
Σ, the switchs that should be handling the packet, and the packetp
to which the policy applies. Here, theauth function tests whether
theSrcAddr field of the packetp being processed is equal to the
DstAddr of any other packetp’ in the filtered traffic history (and
because there is only one switch in this example,auth ignores its
s argument). In other words, it tests whether the authentication
server has sent a packet to that sender in the past. If it has, the
inspector predicate is satisfied; if not, it is not satisfied. Theauth
function performs these tests using the auxiliary functionsany, a
built-in function that tests whether a boolean function is true of
any element of a multiset, andisAddr, a user-defined function that
tests whether one packet’sDstAddr is equal to another packet’s
SrcAddr. This inspector is combined with the other set-theoretic
operators to implement the overall packet-forwarding policy.

Policies that use inspectors are easy to write because forwarding
decisions can be expressed using arbitrary functional programs.
These programs can query past traffic history or look up facts
they need such as authentication status in a database. On the other
hand, these programs never have to manage the low-level details
of generating or installing switch-level rules—the run-time system
does that tedious, error-prone work for the programmer. Of course,
this expressiveness presents an extreme challenge for the compiler
and run-time system. While it would be easy to evaluate the results
of such policies by sending all packets to the controller, doing so
would be totally impractical. We must find a way to implement the
policy while processing the majority of traffic on switches.

Our implementation strategy for such policies proceeds as fol-
lows. First, we compile the parts of the policy that do not involve
inspectors as effectively as we can: The system generates normal
forwarding rules when it can, and rules that send packets to the con-
troller otherwise. Next, whenever a packet that cannot be handled
by a switch arrives at the controller, the run-time system evaluates
the packet against the current policy, which includes inspectors,
producing a set of forwarding actions. There are two possibilities:

1. The policy with respect to this packet (and similar ones) is
invariant. In other words, every subsequent time the system
evaluates the policy against this packet, it will return the same
set of forwarding actions.

2. The policy with respect to this packet (and similar ones) is
volatile. In other words, the set of forwarding actions to be
applied to this policy may change in the future.

In the first case, the system can install rules on the switch that as-
sociate packets similar to the one just processed with the set of
forwarding actions just computed. Because the set of computed ac-
tions will never change, installing such rules on switches preserves
the semantics of the policy. In the second case, the system can not
install rules on the switch—the next packet might be forwarded
differently, so the system will have to reevaluate it on the con-
troller. In our example, once a host has been authenticated, it stays
authenticated—once theauth function evaluates to true it will con-
tinue to do so, and is thereforeinvariant. Since inferring invariance
automatically from an arbitrary program is a difficult problem, we
currently ask NetCore programmers to supply invariance informa-
tion to the compiler in the form of an auxiliary hand-written func-
tion. In this simple case, writing the invariance functionauth_inv
is trivial— it is true wheneverauth is true:

auth_inv (Σ,s,p) = auth (Σ,s,p)

To effectively generate rules, even in the presence of inspector
predicates, the run-time system must be able to determine when
inspector returns the same results on one packet as it does on
another—i.e., it must be able to calculate thesimilar packetsre-
ferred to above. Observe that an inspector always returns the same
results on two different packets if those packets agree on all header
fields that the inspector function examines. Conversely, if the in-
spector does not examine a particular header field, the value of that
field does not affect its result. Hence, when generating a policy
after evaluating it against a single packet, the run-time can substi-
tute wildcards for all header fields that the policy does not inspect.
Though it is likely possible to infer the set of headers any inspector
function examines (at least conservatively), our current implemen-
tation assumes that programmers supply this information explicitly.

Overall, these techniques—(1) run-time evaluation of policies
against particular packets on the controller, (2) invariance, and (3)
specification of header information—collaborate to turn the diffi-
cult problem of evaluating policies containing arbitrary functions
back in to the simpler problem of compiling static forwarding poli-
cies efficiently. We call these techniquesreactive specialization.

3. A Core Calculus for Network Programming
This section defines the syntax and semantics of NetCore, a core
calculus for high-level network programming. The calculus has two
major components:predicates, which describe sets of packets, and
policies, which specify where to forward those packets. Figure 2
presents the syntax of these constructs as well as various network
values such as headers and packets.

Notation. Throughout this paper, whenever we define syntax, as
in the grammar for packets, we will use the grammar non-terminal
(p) as a metavariable ranging over the objects being defined, the
capitalized version of the non-terminal (P ) as a metavariable rang-
ing over sets or multisets of such objects, and vector notation (p⃗)
for sequences of objects.

We describe finite sets using the notation{x1, . . . , xk} and
combine sets using operations∪, ∩, ¬, and∖ (union, intersection,
complement, and difference respectively). Typically, we give defi-
nitions for intersection and complement and leave union (S1∪S2 =

¬(¬S1 ∩ ¬S2)) and difference (S1 ∖ S2 = S1 ∩ ¬S2) as de-
rived forms. We also overload¬ and use it to negate booleans;
its meaning will be clear from context. We write multisets us-
ing the notation{∣x1, . . . , xn∣} and combine multisets using mul-
tiset unionM1 ⊎ M2. We write finite maps using the notation
{x1 ↦ y1, . . . , xn ↦ yn} and lookup elements of a finite map
m using function applicationm(xi).

Network values. For simplicity, we only model a single kind of
network entity to forward to, switchess. Packetsp are the basic



Network Values

Switch s

Header h

Switch Set S ::= {s1, . . . , sn}

Header SetH ::= {h1, . . . , hn}

Bit b ::= 1 ∣ 0

Packet p ::= {h1 ↦ b⃗1, . . . , hn ↦ b⃗n}

State Σ ::= {∣(s1, p1), . . . , (sn, pn)∣}

Language

Snapshot x ::= (Σ, s, p)

Wildcard w ::= 1 ∣ 0 ∣ ?

Inspector f ∈ State[H1] × Switch × Packet[H2]→ Bool

Predicate e ::= h ∶ w⃗ ∣ switch s ∣ inspect e f ∣ e1 ∩ e2 ∣ ¬e
Policy τ ::= e→ S ∣ τ1 ∩ τ2 ∣ ¬τ

Figure 2. NetCore syntax.

JeK = {x1, . . . , xk}
Jh ∶ w⃗K = {(Σ, s, p) ∣ p(h)matchesw⃗}

q
switch s

′
y
= {(Σ, s, p) ∣ s′ = s}

Jinspect e fK = {(Σ, s, p) ∣ f(Σ′, s, p)}
whereΣ′ = {(s′, p′) ∣ (s′, p′) ∈ Σ and(Σ, s′, p′) ∈ JeK}

Je1 ∩ e2K = Je1K ∩ Je2K
J¬eK = ¬ JeK

JτK (x) = S

Je→ SK (x) = {S if x ∈ JeK
∅ otherwise

Jτ1 ∩ τ2K (x) = Jτ1K (x) ∩ Jτ2K (x)
J¬τK (x) = ¬ JτK (x)

Figure 3. NetCore semantics.

values processed by programs, which we represent as a finite map
from headersh to bitstrings b⃗. We write p(h) for the bitstring
associated with the headerh in p. We assume all fields have fixed,
finite length and therefore the set of complete packets is finite. The
controller state(Σ) accumulates information about packets that
arrive at each switch. We represent controller state as a multiset
of switch-packet pairs.

Predicates. Informally, predicates select sets of packets that are
of interest in some forwarding policy. Formally, a predicatee de-
notes a set ofsnapshotsx comprising a controller stateΣ, a switch
s, and a packetp located ats. The state component is essential
for modeling predicates that depend upon historical traffic patterns,
such as the past load on particular links or packets sent and re-
ceived from various locations. Figure 3 defines the semantics of
predicates. We say that a snapshotx matchesa predicatee when it
belongs to the denotation ofe. We sometimes say that a packetp
matchese, leaving the state and the switch implicit because they are

irrelevant or uninteresting. We also say that a bitstringb⃗ matchesa
wildcard w⃗ whenever the corresponding bits match. For example,
1111 and0011 both match the wildcard??11.

Basic predicates have the formh ∶ w⃗. A packetp matchesh ∶ w⃗
if p(h), (i.e., the h header ofp) matchesw⃗. For example, the
predicateDstPort:1010000 matches all packets withDstPort
header field equal to80 (as1010000 is80 in binary). Another basic
predicate,switch s, matches all packets (in any state) sent tos.
More complex predicates are built up from simpler ones using the
intersection and complement operators. Additional building blocks
such asTrue, False, e1 ∪ e2, or e1 ∖ e2 can be implemented as
derived forms.

The most interesting component of the language is theinspector
predicate,inspect e f . The first component of an inspector is a
filter predicatee that selects switch-packet pairs matchinge from
the current stateΣ, creating a refined stateΣ′. In other words,e acts
as a query over the network traffic history. The second component,
f , is an (almost) arbitrary Boolean-valued function overΣ

′ and
the switch-packet pair (s and p) in question. The authentication
example defined in the previous section used an inspector. Another
example is (inspect filterWeb cond) where

filterWeb = DstPort:1010000
cond (Σ,s,p) = cardinality Σ < 10000 ||

p.SrcAddr == 10.0.0.1

Here,cardinality is a function that counts the number of ele-
ments in a multiset. This inspector extracts all web traffic (DstPort
is 1010000) from the current state. The inspector is satisfied if the
total number web packets sent is less than10000 or the packetp
comes from a particular sender (SrcAddr is 10.0.0.1).

To make compilation tractable, two additional pieces of infor-
mation are associated with inspector functionsf . The first piece
of information comes from the sets of headers mentioned in its in-
dexed type,

State[H1] × Switch × Packet[H2]→ Bool .

Such a type restrictsf to only examine headersH1 of packets in
the state and headersH2 in the packet. For instance, the function
cond above may be assigned a type whereinH1 is the empty set
(as summing packet counts requires looking at no headers) and
H2 is {SrcAddr} (ascond only examines theSrcAddr field of its
packet argument). The second piece of information associated with
f comes from itsinvariance oracle. A function f is invariant on(Σ, s, p), written invariant ((Σ, s, p), f), if for all Σ′, we have

f(Σ ⊎Σ
′

, s, p) = f(Σ, s, p) .
Intuitively, a function is invariant on a state when its result does not
change, no matter what additional information is added to it. Again,
as an example, thecond function above is invariant on all snapshots
involving packets from10.0.0.1 as well as all snapshots where
cardinality Σ ≥ 10000—once the total volume of web traffic
has crossed the threshold, the function always returns true. In our
implementation, the programmer writes invariance oracles by hand
as simple Haskell functions.

Together, the header sets in the inspector types, and the invari-
ance oracle, allow the compiler to generate effective switch-level
rules even though the inspector function itself cannot be analyzed.
However, the language of predicates does have one significant lim-
itation: it depends uponpermanentinvariance of predicates. There
are predicates that are invariant for a long time, and hence could
have rules installed on switches for that time, but are not perma-
nently invariant. We believe our framework can be extended to han-
dle such semi-permanent invariance properties, having the compiler
uninstall rules at the end of a time period, or in response to a net-
work event, but defer an investigation of this topic to future work.



Synchronous MachineMsync ::= (τ,Σ, T )
Asynchronous MachineMasync ::= (τ,Σ, T1, T2)
Msync

o
Ð→M ′

sync

JτK (Σ, s, p) = S forward(S, p) = T ′
(τ,Σ, T ⊎ {∣T (s ∣ p) ∣}) s,p

Ð→ (τ,Σ ⊎ {∣(s, p)∣}, T ⊎ T
′)

Masync
o
Ð→M ′

async

JτK (Σ, s, p) = S forward(S, p) = T ′
T
′

1 = T1 ⊎ T
′

T
′

2 = T2 ⊎ {∣T (s ∣ p) ∣}
(τ,Σ, T1 ⊎ {∣T (s ∣ p) ∣}, T2) s,p

Ð→ (τ,Σ, T ′1, T ′2)
(τ,Σ, T1, T2 ⊎ {∣T (s ∣ p) ∣})→ (τ,Σ ⊎ {∣(s, p)∣}, T1, T2)

Figure 4. Reference machines.

Policies. Policies τ specify how packets should be forwarded
through the network. Basic policies, writtene → S, say that pack-
ets matchinge should be forwarded to the switches inS. As with
predicates, we build complex policies by combining simple poli-
cies using intersection and negation. Figure 3 defines the semantics
of policies as a function from snapshotsx to sets of switchesS. Al-
though the policy language is syntactically simple, it is remarkably
expressive. In particular, inspectors are a powerful tool that can be
used to express a wide range of behaviors including load balancing,
fine-grained access control, and many standard routing policies.

Machines. To understand how the network behaves over time,
we define two abstract machines. Both machines forward pack-
ets according toτ but they differ in how often the switches syn-
chronize traffic statistics with the controller. Thesynchronous ma-
chine defines an idealized implementation that, at all times, has
perfect information about the traffic sent over the network. Of
course, it would be impractical to implement this machine in a
real network because, in general, it would require sending ev-
ery packet to the controller—if any packet were forwarded by a
switch there would be a delay between when the packet was for-
warded and when the controller state was augmented with infor-
mation about that packet. Theasynchronous machinedefines a
looser, more practical, implementation. Like the first machine, it
is policy-compliant—it forwards packets according to the policy—
but it updates its state asynchronously instead of in lockstep with
each packet processed. Hence, it makes no guarantees about what
it knows about the network’s traffic. While the synchronous ma-
chine can be thought of as the best possible policy-compliant ma-
chine, the asynchronous machine can be thought of as the worst
policy-compliant machine. Any reasonable implementation will sit
between the two. In other words, implementations should be policy
compliant, but users should not expect perfect synchrony—the cost
of implementing it would be prohibitive. In practice, synchroniza-
tion with switches typically happens at periodic, timed intervals
(modulo variances in the latency of communication) but for sim-
plicity, we do not model time explicitly.

Figure 4 defines both reference machines. They use the function
forward(S, p), which generates a multiset of transmissions,

forward(S, p) = {∣T (s ∣ p) ∣ s ∈ S∣} .

The state of the synchronous machine (Msync) includes the NetCore
policy τ , the stateΣ, and a multisetT of pending transmissions. At
each step, the machine removes a transmission fromT , processes
it using the policy, updates the machine state, and adds the new
transmissions generated by the policy to the multiset of pending
transmissions. The state of the asynchronous machine (Masync)
includes the programτ , stateΣ, and two multisets of transmissions:
T1, which represents transmissions waiting to be processed by
the policy, andT2, which represents transmissions that have been
processed by the policy but have not yet been added to the state.
The first inference rule for the second machine takes a transmission
from T1, processes it using the policy, and places it inT2, the set
of transmissions waiting to be incorporated intoΣ; the second rule
takes a transmission fromT2 and adds it toΣ.

4. The Run-time System
In this section we discuss how to implement NetCore’s semantics
on a software-defined network by giving an operational semantics
to the NetCore run-time system and the underlying network de-
vices. This operational semantics explains the basic interactions
between the controller and the switches.

Switch classifiers. Before we can present the run-time system,
we need a concrete representation of the rules that switches use
to process packets. Aclassifier r⃗ is a sequence of rulesr, each
containing a switch-level patternz and an actionα. While our high-
level semantics uses sets, classifiers are represented as sequencesto
model rule priority: within a classifier, rules on the left have higher
priority than rules on the right.

Thepattern(z) component of a rule recognizes a set of packets,
and hence is similar to (but less general than) a predicate in Net-
Core. We writep ⊑ z when packetm matches patternz. We hold
patterns abstract to model the variety of different matching capabil-
ities in today’s switches. For example, OpenFlow switches support
prefix pattern matching on source and destination IP addresses (i.e.,
patterns like0110*) but only exact or full unconstrained matching
on most other headers. Some switches support various other ex-
tended patterns, such as ranges of the form[n1, n2].

An actionα is either a set of switchesS, which forwards packets
to each switch in the set, orΩ, which forwards packets to the
controller. Most switches support other actions such as modifying
header fields, but for simplicity we only model forwarding.

Given a packetp and a classifier⃗r, we match the packet against
the classifier by finding the first rule whose pattern matches the
packet. We write⃗r ↝p z ∶ α for the matching judgment. More
formally, we define classifier matching as follows; note that it
selects the highest priority (leftmost) matching rule:

p ⋢ z1 ⋯ p ⋢ zi−1 p ⊑ zi

(z1 ∶ α1, . . . , zi−1 ∶ αi−1, zi ∶ αi, . . . , zn ∶ αn)↝p
zi ∶ αi

Molecular machine. We formalize the operational semantics of
the run-time system as amolecular machine, in the style of the
chemical abstract machine [2]. The machine’s components, called
molecules, are given on the left side of Figure 5. For simplicity, we
assume that packets arriving at a switch may be processed in any
order and do not model failures that cause packets to be dropped.

The moleculeC (τ ∣ Σ) represents the controller machine run-
ning the NetCore policyτ in stateΣ. The moleculeS (s ∣ r⃗ ∣ Z)
represents switchs with packet classifier⃗r and local switch stateZ.
The switch state records the patterns of rules that have been used to
match packets but not yet queried and processed by the controller.
Real switches use integer counters as state; for simplicity, we rep-
resent these counters in unary using a multiset of patterns. A trans-
mission moleculeT (s ∣ p) represents a packetp en route to switch



Pattern z

Switch Action α ::= S ∣ Ω
Rule r ::= z ∶ α

Classifier r⃗ ::= (r1, . . . , rn)
Switch State Z ::= {∣z1, . . . , zn∣}

Molecule m ::= C (τ ∣ Σ) ∣
S (s ∣ r⃗ ∣ Z) ∣
T (s ∣ p) ∣
H (s ∣ p)

Machine M ::= {∣m1, . . . ,mn∣}
Observation o ::= ⋅ ∣ s, p

M
o
Ð→ M′

E-SWITCHPROCESS

r⃗ ↝p
z ∶ S forward(S, p) = T ′

S (s ∣ r⃗ ∣ Z) ,T (s ∣ p) s,p
ÐÐ→ S (s ∣ r⃗ ∣ Z⊎ {∣z∣}) , T ′

E-SWITCHHELP

r⃗ ↝p
z ∶ Ω

S (s ∣ r⃗ ∣ Z) ,T (s ∣ p)→ S (s ∣ r⃗ ∣ Z) ,H (s ∣ p)
E-CONTROLLER

JτK (Σ, s, p) = S forward(S, p) = T ′ Specialize((Σ, s, p), τ) = r⃗′
C (τ ∣ Σ) ,S (s ∣ r⃗ ∣ Z) ,H (s ∣ p) s,p

ÐÐ→ C (τ ∣ Σ ⊎ {∣(s, p)∣}) ,S (s ∣ (r⃗′, r⃗) ∣ Z) , T ′
E-COLLECT

r⃗ ↝p
z ∶ α

C (τ ∣ Σ) ,S (s ∣ r⃗ ∣ Z⊎ {∣z∣})→ C (τ ∣ Σ ⊎ {∣(s, p)∣}) ,S (s ∣ r⃗ ∣ Z)
E-STEP

M
o
Ð→ M′

(M ⊎M′′) o
Ð→ (M′ ⊎M′′)

Figure 5. The run-time system.

s. Finally, a help moleculeH (s ∣ p) represents a request issued by
switchs to the controller for assistance in processing packetp.

The operational semantics of the molecular machine is defined
by the inference rules on the right side of Figure 5. To lighten the
notation in this figure, we drop the multiset braces when writing
a collection of molecules. In other words, we writem1,m2, . . .
instead of{∣m1,m2, . . . ∣}. Each operational rule may optionally be
labelled with anobservationo, which records when transmissions
are processed. We use observations in Section 6 where we establish
equivalences between the molecular machine and the reference
machines defined in the last section.

The rules E-SWITCHPROCESSand E-SWITCHHELP model the
work done by switches to process packets. The former rule is
invoked when a packet matches a rule with a non-controller action
(a set of switches to forward to). In this case, the switch forwards
the packet accordingly and records the rule pattern in its state. The
latter rule is invoked when a packet matches a rule with a controller
action. In this case, the switch generates a help molecule.

The rule E-CONTROLLER models the work done by the con-
troller to process help molecules. The controller interprets the
packet using its NetCore policy, generating new transmissionsT ′

to be sent into the network, and adds the packet to its state. In ad-
dition, the controller uses the NetCore compiler to generate new
rules to process future, similar packets on switches, instead of on
the controller. The compiler is accessed through the call to the
Specialize function, which generates the new rules for the switch
in question. We hold the definition of this function abstract for now;
it is defined precisely in the next section.

The rule E-COLLECT models the work done by the controller
to transfer information about the packets that matched a particular
switch-level rule from the switch to the controller state. More pre-
cisely, it chooses a patternz from a switch state and then uses the
lookup judgement⃗r ↝p z ∶ α to synthesize a packetp that might
have matched the corresponding rule in the switch classifier. The
pair of the packet and the switch are then stored in the controller
state as a past transmission that might have occurred.

The interesting part of this transfer is that the controller stores
full packets whereas switches only store sets of patterns and a

pattern only specifiespart of a packet—perhaps its IP address or
VLAN tag, but not the packet itself. Hence the transfer operation
must fabricate those parts of the packets that are not specified in
the switch pattern, and the system as a whole must be correct no
matter how the under-specified parts of a packet are fabricated.
This places an important constraint on the compiler: If the rules
and their patterns are not specific enough then although one packet
may have matched a rule on a switch, a completely different packet
may be fabricated and passed back to the controller. Consequently,
the controller state will not model past network traffic sufficiently
accurately and forwarding policies that depend upon past network
traffic will not be implemented correctly.

A second subtle issue with the E-COLLECT rule is that the pat-
terns of higher-priority rules partially overlap and take precedence
over patterns from lower-priority rules. Hence, examining the pat-
tern of a low-priority rule in isolation does not provide sufficient
information to synthesize a packet that might have matched that
rule. One must take all of the rules of the classifier, and their prior-
ity order, in to account when synthesizing a packet that may have
matched a pattern. The E-COLLECT rule does this through the use
of the full classifier matching judgement.

Finally, note that the implementation does not actually fabricate
all of these packets—in practice, the switch passes integer coun-
ters associated with patterns back to the controller. Still, this non-
deterministic rule effectively captures a key correctness criterion
for the system: The controller program cannot distinguish between
any of the packets that might be synthesized by the E-COLLECT
rule and must be correct no matter which one is fabricated. Of
course, this is also where the compiler’s use of header information
comes in to play: the fabricated packets are only different in fields
that inspector functions (and other predicates) do not analyze.

5. The NetCore Algorithms
The NetCore system performs two distinct tasks:

• Classifier Generation:given a NetCore policy, construct a set
of classifiers, one for each switch in the network.



Primitive intermediate formu ::= (h1 ∶ w⃗1) ∧. . .∧ (hn ∶ w⃗n)
Three-valued booleanb ::= True ∣Maybe ∣ False

Pattern intermediate formπ ::= ⟨u ∶ z ∶ b ∶H⟩
Policy intermediate formρ ::= ⟨u ∶ z ∶ S1, S2 ∶H⟩

I (s, e) = π⃗
I (s, h ∶ w⃗) = ⟨(h ∶ w⃗) ∶ O(h ∶ w⃗) ∶ True ∶ ∅⟩,

⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
I (s, switch s

′) = {⟨⋆ ∶ ⊺ ∶ True ∶ ∅⟩ if s = s′

⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩ if s ≠ s′

I (s, inspect e f) =∏
i

⟨ui ∶ zi ∶ Maybe ∶ (Hi ∪H)⟩
wheref ∶ State[H] × Switch × Packet[H ′]→ Bool

and (I (s, e))
i
= ⟨ui ∶ zi ∶ bi ∶Hi⟩

I (s, e ∩ e
′) =∏

i

∏
j

⟨ui ∧ u
′

j ∶ zi ⊓ z
′

j ∶ bi ∧ b
′

j ∶Hi ∪H
′

j⟩
where(I (s, e))

i
= ⟨ui ∶ zi ∶ bi ∶Hi⟩

and (I (s, e′))
j
= ⟨u′j ∶ z′j ∶ b′j ∶H ′j⟩

I (s,¬e) =∏
i

⟨ui ∶ zi ∶ ¬bi ∶Hi⟩
where(I (s, e))

i
= ⟨ui ∶ zi ∶ bi ∶Hi⟩

I (s, τ) = ρ⃗

I (s, e→ S) =∏
i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨ui ∶ zi ∶ S,S ∶Hi⟩ if bi = True

⟨ui ∶ zi ∶ ∅, S ∶Hi⟩ if bi =Maybe

⟨ui ∶ zi ∶ ∅,∅ ∶Hi⟩ if bi = False

where(I (s, e))
i
= ⟨ui ∶ zi ∶ bi ∶Hi⟩

I (s, τ ∩ τ
′) =∏

i

∏
j

⟨ui ∧ u
′

j ∶ zi ⊓ z
′

j ∶ S
′

1, S
′

2 ∶Hi ∪H
′

j⟩
where(I (s, τ))

i
= ⟨ui ∶ zi ∶ S1i, S2i ∶Hi⟩

and (I (s, τ ′))
j
= ⟨u′j ∶ z′j ∶ S′1j , S′2j ∶H ′j⟩

andS′1 = S1i ∩ S
′

1j

andS′2 = S2i ∩ S
′

2j

I (s,¬τ) =∏
i

⟨ui ∶ zi ∶ ¬S2i,¬S1i ∶Hi⟩
where(I (s, τ))

i
= ⟨ui ∶ zi ∶ S1i, S2i ∶Hi⟩

C (s, τ) = r⃗

C (s, τ) =∏
i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zi ∶ S1i if S1i = S2i andHi ⊆ headers(zi)

and consistent(ρ⃗, i)
zi ∶ Ω otherwise

whereI (s, τ) = ρ⃗
and(ρ⃗)i = ⟨ui ∶ zi ∶ S1i, S2i ∶Hi⟩
and consistent(ρ⃗, i) =

∀p.∃j. ρ⃗↝p
z ⟨ui ∶ zi ∶ S1i, S2i ∶Hi⟩⇒

ρ⃗↝p
u ⟨uj ∶ zj ∶ S1i, S2i ∶Hj⟩

andheaders(z) = {h ∣ p1 ⊑ z ∧ p2 ⊑ z ⇒ p1(h) = p2(h)}
Figure 6. NetCore classifier generation.

• Reactive Specialization:given a packet not handled by the
current classifier installed on a switch, generate additional rules
that allow the switch to handle future packets with similar
header fields without consulting the controller.

This section presents the key algorithms that implement these tasks.

5.1 Parameters

The NetCore system is parameterized on several structures: a lattice
of switch patterns, and two oracles that map primitive predicates
onto switch-level and wildcard patterns respectively. Abstracting
some of the low-level details of compilation makes it possible to
execute NetCore policies on many diverse kinds of hardware and
even use switches with different capabilities in the same network.
Formally, we assume that switch patterns form a bounded lattice.
A patternz1 sits lower than (or equal to) another patternz2, writ-
tenz1 ⊑ z2, whenz1 matches a subset of the packets matched by
z2. The⊺ element matches every packet and the� element matches
none. Abusing notation slightly, we writep ⊑ z to indicate that
packetp matches patternz. To ensure that intersections are com-
piled correctly, we require that meets beexact, in the sense that
p ⊑ z ⊓ z′ if and only if p ⊑ z andp ⊑ z′.

The first oracle, called thecompilation oracleO, maps primi-
tivesh ∶ w⃗ into the pattern lattice. In many cases, the pattern gener-
ated byO(h ∶ w⃗) will match the set of packets described byh ∶ w⃗
exactly, but sometimes this is not possible. For example, Open-
Flow switches only support prefix wildcards for IP addresses, so
the best approximation of the non-prefix patternSrcAddr ∶ 1?1? is
SrcAddr ∶ 1???. We give the oracle some flexibility in selecting pat-
terns and only require it to satisfy two conditions: (1) it must return
an overapproximation of the primitive and (2) it must be mono-
tonic, in the sense it translates (semantically) larger primitives to
larger patterns. Formally, the requirements on compilation oracles
are as follows: (1)(Σ, s, p) ∈ Jh ∶ wK implies p ⊑ O(h ∶ w) and
(2) Jh ∶ wK ⊆ Jh′ ∶ w′K impliesO(h ∶ w) ⊑ O(h′ ∶ w′).

The second oracle, called therefinement oracleU , takes a prim-
itive h ∶ w⃗ and a packetp as arguments and produces a pattern
h ∶ w⃗′. Unlike the compilation oracle, which overapproximates
predicates, the refinement oracle underapproximates predicates, al-
lowing the compilation infrastructure to generate effective switch-
level rules for a subset of the pattern of interest. While there is gen-
erally one best overapproximation, there often exist many useful
underapproximations; in such cases, we disambiguate by selecting
the best underapproximation that matchesp. For example, if we
were to refineSrcAddr ∶ 1?1? (which can’t be compiled exactly on
OpenFlow) with a packet with source address 1111, we would gen-
erate the underapproximationSrcAddr ∶ 111?, yet if we refined the
same predicate with a packet with source address 1010, we would
instead generateSrcAddr ∶ 101?.

5.2 Classifier Generation

Ideally, given a policy, the NetCore compiler would generate a
classifier with the same semantics—i.e., one that denotes the same
function on packets. But certain NetCore features, such as inspec-
tors and wildcard patterns (when not supported by the underlying
hardware), cannot be implemented on switches. So in general, the
generated classifier will only approximate the policy, and certain
packets will have to be processed on the controller.

The classifier generator works in two phases. In the first phase,
it translates high-level policies to an intermediate form containing
switch-level patterns and actions, as well as precise semantic in-
formation about the policy being compiled. In the second phase, it
builds a classifier by attaching actions to patterns, using the seman-
tic information produced in the first phase to determine whether
it is safe to attach forwarding actions to a pattern, or whether the
special controller actionΩ must be used instead.



The grammars at the top of Figure 6 define the syntax for the
intermediate forms used in classifier generation. The intermediate
form for predicates⟨u ∶ z ∶ b ∶H⟩ contains four values: an “ideal”
patternu; a switch patternz; a three-valued booleanb; and a
set of headersH. The ideal patternu represents the pattern we
would generate if the pattern lattice supported arbitrary wildcards.
Ideal patterns are represented as a conjunction of header and wild-
card pairs. We write⋆ for the unconstrained ideal pattern—i.e.,
an empty conjunction. The switch patternz represents the actual
pattern generated by the compiler, which is an overapproximation
of the ideal pattern in general. The three-valued booleanb indi-
cates whether packets matching the predicate should definitely be
accepted (True), rejected (False), or whether there is insufficient
information and a definitive answer must be made by the controller
(Maybe). To combine three-valued booleans, we extend the stan-
dard boolean operators as follows:

Maybe ∧ False = False Maybe ∧True =Maybe

Maybe ∧Maybe =Maybe ¬Maybe =Maybe

The set of headersH keeps track of the header fields (within pack-
ets in the controller state) that inspector functions may examine.
This header information is used to ensure the compiler generates
sufficiently fine-grained switch rules so that when information is
transferred from the switch to the controller (using the E-COLLECT
rule discussed in the previous section), the information is precise
enough to guarantee the correctness of the inspectors.

The intermediate form for policies⟨u ∶ z ∶ S1, S2 ∶H⟩ is similar
to the form for predicates, but instead of a three-valued boolean,
it records lower and upper bounds (S1 and S2) on the sets of
switches to which a packet might be forwarded. Intuitively, a proper
forwarding rule can only be generated when we know exactly
which switches to forward packets to (i.e., whenS1 andS2 are
equal). In other cases, the compiler will generate a rule that sends
packets to the controller.

Predicate translation. The heart of classifier generation is the
function I (s, e), presented in Figure 6, which takes a predicate
e and switchs as arguments and produces a sequence of interme-
diate predicates that approximatee on s. One of the invariants of
the algorithm is that it always generates acompletesequence—
i.e., intermediate predicates whose patterns collectively match ev-
ery packet. In addition, the algorithm attempts to produce a se-
quence whose patterns separate packets into two sets—one with
packets that match the predicate being compiled and another with
those that do not. However, it does not always succeed in doing
so, for two fundamental reasons: (1) the algorithm cannot analyze
the decisions made by inspectors—as far as the analysis is con-
cerned, inspectors are black boxes, and (2) certain primitive predi-
cates cannot be expressed precisely using switch patterns. The in-
termediate predicates contain sufficient information for the com-
piler to reason about the precision of the rules it generates. We
write (I (s, e))

i
= ⟨ui ∶ zi ∶ bi ∶Hi⟩ to indicate that compilinge

returns a sequence of intermediate predicates whoseith element is⟨ui ∶ zi ∶ bi ∶Hi⟩, and

∏
i

⟨ui ∶ zi ∶ bi ∶Hi⟩
to denote the sequence of intermediate predicates out of compo-
nents⟨ui ∶ zi ∶ bi ∶Hi⟩ indexed byi.

The first equation at the top of Figure 6 states that the compiler
translates primitive predicatesh ∶ w⃗ into two intermediate pred-
icates:⟨(h ∶ w⃗) ∶ O(h ∶ w⃗) ∶ True ∶ ∅⟩, which contains the switch
pattern produced by the compilation oracle, and⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩,
which, by using the⊺ pattern, ensures that the sequence is com-
plete. Like classifiers, these sequences should be interpreted as a

prioritized series of rules. Hence the second quadruple only rejects
things the first does not match.

The case for switch predicatesswitch s′ has two possible out-
comes: If the switchs whose classifier is being compiled is the
same ass′, then the compiler generates an intermediate form that
associates every packet withTrue. Otherwise, the compiler gener-
ates an intermediate form that associates every packet withFalse.

Intuitively, the classifier generated forinspect e f must satisfy
three conditions. First, it should approximate the semantics off .
Because the behavior off is unknown at compile time, the approx-
imation cannot be exact. Hence, the intermediate predicates gener-
ated for the inspector should containMaybe, indicating that match-
ing packets should be sent to the controller for processing. Second,
it should be structured so that it can identify packets matched by
the traffic filter predicatee—i.e., the packets that must be present
in the controller state to evaluatef . Third, it should also be suffi-
ciently fine-grained to provide information about the set of headers
H mentioned in the type off , which represent the headers of pack-
ets in the state thatf examines.2 Hence, the compiler recursively
generates a sequence of intermediate predicates frome, and then it-
erates through it, replacing the three-valued booleanbi with Maybe
and addingH to the set of headersHi in each⟨ui ∶ bi ∶ zi ∶Hi⟩.

To generate intermediate forms for an intersection(e1 ∩ e2),
the compiler combines each pair of intermediate predicates gener-
ated fore1 ande2. The resulting classifier captures intersection in
the following sense: if a packet matcheszi in the first intermediate
form and matchesz′j in the second intermediate form, it matches
the form with patternzi⊓z′j in the result, and likewise forui andu′j .
Performing this construction naively would result in a combinato-
rial blowup. However, it is often possible to exploit algebraic prop-
erties of patterns to reduce the size of the sequence in practice—see
the examples below and also Section 7.

Finally, the case for negated predicates:¬e iterates through the
sequence generated by the compiler fore and negates the three-
valued boolean in each intermediate predicate.

Predicate translation examples.To illustrate some of the details
of predicate compilation, consider the translation of the inspector-
free predicate(e1 ∩ e2) wheree1 is (h1 ∶ 0?) ande2 is (h2 ∶ 11)
andh1 andh2 are distinct headers. Assume that switch patterns
support wildcards such as0? onh1. The left and right sides of the
intersection generate the following intermediate predicates:

I (s, e1) = ⟨(h1 ∶ 0?) ∶ (h1 ∶ 0?) ∶ True ∶ ∅⟩, ⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
I (s, e2) = ⟨(h2 ∶ 11) ∶ (h2 ∶ 11) ∶ False ∶ ∅⟩, ⟨⋆ ∶ ⊺ ∶ True ∶ ∅⟩

Note that the negation ine2 flips the parts of the intermediate forms
designated asTrue—i.e., it inverts the parts of the sequence that
match and do not match the predicate.

Next, consider compilation of the intersection, and note that we
simplify the results slightly using identities such asz ⊓ ⊺ = z and
u ∧ ⋆ = u andb ∧True = b.

⟨(h1 ∶ 0? ∧ h2 ∶ 11) ∶ (h1 ∶ 0? ⊓ h2 ∶ 11) ∶ True ∶ ∅⟩,⟨(h1 ∶ 0?) ∶ (h1 ∶ 0?) ∶ False ∶ ∅⟩,⟨(h2 ∶ 11) ∶ (h2 ∶ 11) ∶ False ∶ ∅⟩,⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
This classifier can then be simplified further, as the last three rules
overlap and are associated with the same three-valued boolean:

⟨(h1 ∶ 0? ∧ h2 ∶ 11) ∶ (h1 ∶ 0? ⊓ h2 ∶ 11) ∶ True ∶ ∅⟩,⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
Now suppose instead that the switch only has limited support for
wildcards and cannot representh1 ∶ 0?. In this case, the compilation

2 Note that the compiler does not add the setH′ mentioned in the type off
toHi. This set is used during specialization to determine “similar” packets.



oracle provides an overapproximation of the pattern, say,⊺. Hence,
the intermediate predicate fore1 above would be as follows:

I (s, e1) = ⟨(h1 ∶ 0?) ∶ ⊺ ∶ True ∶ ∅⟩, ⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
For another example, consider compiling a predicate that in-

cludes an inspector such as(inspect (h1 ∶ 00) f) ∩ (h2 ∶ 11). In
this case,(h1 ∶ 00) compiles similarly to the simple clauses above:

⟨(h1 ∶ 00) ∶ (h1 ∶ 00) ∶ True ∶ ∅⟩, ⟨⋆ ∶ ⊺ ∶ False ∶ ∅⟩
If the set of headersf examines on the state isH, the inspector
inspect (h1 ∶ 00) f compiles to the following:

⟨(h1 ∶ 00) ∶ (h1 ∶ 00) ∶ Maybe ∶H⟩, ⟨⋆ ∶ ⊺ ∶ Maybe ∶H⟩
Note that the definitive booleans above have been replaced with
Maybe, indicating that the controller will need to determine
whether packets match the predicate. However, when we inter-
sect the results of compilingh2 ∶ 11 with the results of compiling
the inspector, we obtain the following:

⟨(h1 ∶ 00 ∧ h2 ∶ 11) ∶ (h1 ∶ 00 ⊓ h2 ∶ 11) ∶ Maybe ∶H⟩,⟨(h2 ∶ 11) ∶ (h2 ∶ 11) ∶ Maybe ∶H⟩,⟨(h1 ∶ 00) ∶ (h1 ∶ 00) ∶ False ∶H⟩,⟨⋆ ∶ ⊺ ∶ False ∶H⟩
Importantly, even though the inspector is uncertain (i.e., it has
Maybe in each intermediate predicate), the result is not entirely un-
certain. Becauseb∧False is False even whenb is Maybe, intersect-
ing inspectors with definitive predicates can resolve uncertainty.
Likewise, asb ∨ True is True, compiling the union of a definitive
clause with an inspector also eliminates uncertainty. And although
the calculus does not represent unions explicitly, its encoding oper-
ates as expected—a fact we exploit in reactive specialization.

Policy translation. The functionI (s, τ), which translates a pol-
icy into intermediate form, is similar to the translation for pred-
icates. Figure 6 gives the formal definition of the translation. To
translate a basic policye → S, the compiler first generates a se-
quence frome, and then attaches a pair of actions representing
lower and upper bounds for each rule. There are three cases: If
the three-valued booleanbi is true, it usesS as both the upper and
lower bounds. Ifbi is false, it uses∅ as the bounds. Ifbi is Maybe,
it uses∅ as the lower bound andS as the upper bound, which rep-
resents the range of possible actions. The translations of intersected
and negated policies are analogous to the cases for predicates.

Classifier construction. The second phase of classifier genera-
tion analyzes the intermediate form of the policy and produces a
bona fide switch classifier. TheC (s, τ) function that implements
this phase is defined in Figure 6. It first usesI (s, τ) to gener-
ate a sequence of intermediate policies, and then analyzes each⟨ui ∶ S1i, S2i ∶ zi ∶Hi⟩ to generate a rule. There are two possible
outcomes for each intermediate policy in the sequence. First, if (1)
the boundsS1i andS2i are tight, (2)zi is sufficiently fine grained to
collect information about all headers inHi, and (3) we get the same
switch bounds(S1i, S2i) regardless of whether we match pack-
ets using the ideal primitives or the switch-level patterns, then it
is safe for the compiler to throw away the high-level semantic in-
formation (bounds and ideal primitives) and emit an effective rule
zi ∶ S1i. Otherwise, it generates a rule with the controller action
Ω. The formal conditions needed for this analysis are captured by
consistent(ρ⃗, i) andheaders(z). The predicateconsistent(ρ⃗, i) is
satisfied if looking up an arbitrary packet matching theith switch
pattern yields the same switch bounds as looking it up using the
ideal pattern (where we extend classifier lookup to sequences of in-
termediate policies in the obvious way). The functionheaders(z)
calculates the set of headers constrained fully byz.

Formal properties. For a classifier to be sound, it must satisfy
two properties: it must forward packets according to the policy, and
its rules must encode enough information about the packets that
match them to implement inspectors. The correctness of classifier
generation is captured in the following definition and lemma.

Definition 1 (Classifier Soundness). A classifier r⃗ is sound on
switchs with respect toτ if the following two criteria hold:

• Routing soundness:for all snapshots(Σ, s, p), if r⃗ ↝p S then
JτK (Σ, s, p) = S, and

• Collection soundness:for all packetsp1 andp2, if r⃗ ↝p1 z ∶ S
andr⃗ ↝p2 z ∶ S, then for all snapshots(Σ, s′, p′),

JτK (Σ ⊎ {∣(s, p1)∣}, s′, p′) = JτK (Σ ⊎ {∣(s, p2)∣}, s′, p′) .
Lemma 1 (Classifier Generation Soundness). ClassifierC (s, τ) is
sound on switchs with respect toτ .

Intuitively, routing soundness ensures that the actions computed by
looking up rules in the classifier⃗r are consistent withτ . Formally,
the condition states that if looking up a packetp in r⃗ on switch
s produces a set of switchesS, then evaluatingτ on snapshots
containings andp also producesS. Note that this condition does
not impose any requirements if looking upp in r⃗ yields Ω, as
the packet will be sent to the controller, which will evaluateτ
on p directly. Collection soundness ensures that the rules inr⃗
are sufficiently fine grained so that when the controller collects
traffic statistics from switches, the rule patterns contain enough
information to implement the policy’s inspectors. This is seen in
the E-COLLECT rule in the molecular machine (Figure 5), which
fabricates packets that match the rule being collected. Collection
soundness ensures that fabricated packets are correct. Formally, it
requires thatτ behave the same on all snapshots in which the state
Σ has been extended with arbitrary packetsp1 andp2 matching a
given rulez ∶ S. Lemma 1 states that the classifiers generated by
the NetCore compiler are sound.

5.3 Reactive Specialization

The algorithm described in the preceding section generates classi-
fiers that can be installed on switches. But as we saw, it has some
substantial limitations. Dynamic policies that use inspectors cannot
be analyzed. And even for purely static policies, if the switch has
poor support for wildcards, the classifier needed to implement the
policy may be large—much larger than would be practical to gener-
ate. To deal with these situations, we definereactive specialization,
a powerful generalization of the simple, reactive, strategy imple-
mented manually by OpenFlow programmers. We define reactive
specialization using two operations:program refinement, which ex-
pands the policy relative to a new snapshot witnessed at the con-
troller, andpruning, which extracts new, effective rules from the
classifier generated from the expanded policy.

Program refinement. When the controller receives a new packet
that a switch could not handle, it interprets the policy with respect
to the packet, switch, and its current state. The idea in program
refinement is to augment the program with additional information
gleaned from this packet that can be used to build a specialized
classifier that handles similar packets on the switch in the future.
Figure 7 defines the refinement function. The key invariant of this
program transformation is that the semantics of the old and new
policies are identical. However, syntactically, the new program will
typically have a different structure, as the transformation uses the
packet to unfold primitives and inspectors. This makes compilation
more precise and the recompiled program more effective.

The rules for refining a predicate appear at the top of Figure 7.
The first rule uses the refinement oracleU to refine basic predi-
cates. Unlike the compilation oracle, which mayoverapproximate



R(x, e) = e′
R((Σ, s, p), h ∶ w⃗) = (h ∶ w⃗) ∪ U (h ∶ w⃗, p)
R(x, switch s) = switch s

R((Σ, s, p), inspect e f) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(inspect e′ f) ∪ e′′ if invariant (x, f) ∧ f(x)
(inspect e′ f) ∖ e′′ if invariant (x, f) ∧ ¬f(x)
inspect e′ f if ¬ invariant (x, f)
wheref ∶ State[H] × Switch × Packet[H′]→ Bool

andx = (Σ, s, p)
ande′ =R(x, e) ∪ (R(x, e) ∩ similar(s, p,H))
ande′′ = similar(s, p,H′)
R(x, e1 ∩ e2) =R(x, e1) ∩R(x, e2)
R(x,¬e) = ¬R(x, e)

R(x, τ) = τ ′
R(x, e→ S) =R(x, e)→ S

R(x, τ1 ∩ τ2) =R(x, τ1) ∩R(x, τ2)
R(x,¬τ) = ¬R(x, τ)

Specialize(x, τ) = r⃗
Specialize((Σ, s, p), τ) = prune(r⃗, p)

wherer⃗ = C (s,R((Σ, s, p), τ))
Figure 7. NetCore refinement.

the predicate, the refinement oracleunderapproximatesit, so that
the rest of the compilation infrastructure will be able to generate
an effective switch-level rule that matches the given packet. Be-
cause the new predicate is the union of the old predicate and an
underapproximation, the overall semantics is unchanged. In some
cases, especially if the switch-supported patterns are weak, the best
underapproximation the refinement oracle can generate is an exact-
match predicate. In many other cases, however, if the switch sup-
ports prefix matching or wildcards, the refinement oracle will pro-
duce a predicate that matches many more packets.

The second rule refines switch predicatesswitch s. Because the
switch predicate already reveals the maximum amount of informa-
tion, it cannot be refined further.

The rule for inspectors is the most interesting. It uses a simi-
larity predicate that describes the set of packets sent to the same
switch that agree on a set of headersH:

similar(s, p,H) = switch s ∩ ⋂
h∈H
(h ∶ p(h)) .

We first refine the traffic filter predicatee to add additional struc-
ture for traffic collection. To ensure that the refined classifier has
sufficiently fine-grained rules to collect the packets in the controller
state examined byf , we form the union of the refined traffic filter
and the similarity predicatesimilar(s, p,H), restricted to the re-
fined traffic filter. Next, we add additional information about the
inspector’s decision on the packetp to the policy. Recall that iff is
invariant with respect to a snapshotx (which includes the controller
state, switch, and packet) then it will return the same decision on all
similar packets in the future. In the first case, if the inspector is in-

variant and evaluates to true on the current snapshot(Σ, s, p), then
we refine it by taking the union of the inspector and the similarity
predicatesimilar(s, p,H′). The second case is similar, except that
the inspector doesnot evaluate to true, and hence we refine the in-
spector by subtracting the similarity predicate. Finally, in the third
case, the inspector is not invariant so no sound refinement exists—
the decision returned by the inspector may change in the future if
the controller state changes. Hence, packets must continue being
diverted to the controller until the inspector becomes invariant.

The rules for refining intersection(e1 ∩ e2) and negation¬e
predicates and policies are all straightforward.

Pruning. In general, after a policy has been refined and recom-
piled, some of the new rules will be useless—they will not pro-
cess additional packets on the switch. We prune away these useless
rules using a functionprune(r⃗, p) that removes rules from⃗r that
(1) send packets to the controller (adding such rules does not im-
prove the efficiency of the switch), (2) have nothing to do with the
packetp (meaning they are irrelevant to specialization with respect
to p), or (3) overlap with a rule we removed earlier (to preserve the
semantics of the rules).

Putting it all together. We define reactive specialization (the
function Specialize at the bottom of Figure 7), by composing
refinement, recompilation, and pruning to generate a specialized
classifier from a snapshotx and policyτ .

Formal properties. We first establish that specialization, and
therefore reactive rule generation, is sound.

Lemma 2 (Specialization Soundness). If r⃗ is sound on switchs
with respect toτ and r⃗′ = Specialize((Σ, s, p), τ), then(r⃗′, r⃗) is
sound ons with respect toτ .

To establish the other properties, we need a way of characterizing
the packets that go to the controller. We define thecontroller setof
a classifier⃗r as follows:

Ω(r⃗) = {p ∣ r⃗ ↝p
Ω} .

The second property we establish is that refinement ismonotonic.
That is, if we append reactive rules to a switch’s classifier, the
resulting classifier does not send more packets to the controller that
the original one. Formally,

Lemma 3 (Specialization Monotonicity). For all policiesτ and
classifiers⃗r andr⃗′ such that⃗r′ = Specialize((Σ, s, p), τ) we have
Ω((r⃗′, r⃗)) ⊆ Ω(r⃗).

The final property we establish is that under certain assump-
tions, appending reactive rules to a classifier results in strictly fewer
packets going to the controller. To make such a guarantee, we need
two conditions: First, the policyτ must berealizable—intuitively,
it must only use features that can be implemented on switches (e.g.,
on an OpenFlow switch, the policy must not match on payloads).

Definition 2 (Realizable). A policy τ is realizableif, for every sub-
termh ∶ w⃗ of τ andp ∈ Jh ∶ wK, we have(Σ, s, p) ∈ JU (h ∶ w,p)K
if and only if p ⊑ O(U (h ∶ w,p)).
Realizability states that compiling an underapproximation of a
high-level predicate with respect to a packet matching the predicate
yields a switch-level rule that exactly corresponds to the predicate.
Second, all inspectors in the policy must be determinate. We for-
malize this by extending the notion of invariance tofull invariance:

Definition 3 (Fully Invariant). A policy τ is fully invariant on Σ

if for every subterm ofτ of the form inspect e f and we have
invariant ((Σ, s, p), f) for all switchess and packetsp.



For policies satisfying these conditions, we can guarantee that the
packet used to refine and recompile the policy will never be sent to
the controller again.

Lemma 4 (Specialization Progress). If τ is realizable and fully
invariant onΣ, and r⃗′ = Specialize((Σ, s, p), τ), then for any
classifierr⃗, we havep ∉ Ω((r⃗′, r⃗)).
6. System-wide Correctness Properties
This section uses the tools developed in the previous section to de-
liver our two central theoretical results: (1) a proof offunctional
correctnessfor NetCore, and (2) a proof ofquiescence, another
fundamental theorem which establishes that, when inspectors are
invariant, the network eventually reaches a state in which all pro-
cessing occurs efficiently on its switches.

Functional correctness. Recall in Section 3 we defined two ide-
alized reference machines: the synchronous reference machine,
which at all times knows (and has recorded) information about
every packet processed in the network, and the asynchronous ref-
erence machine, which nondeterministically learns about packets
processed in the network. To demonstrate the correctness of the
NetCore compiler, we show that it inhabits the space between
the asynchronous and synchronous reference machines. More for-
mally, we prove that the asynchronous reference machine simulates
the NetCore molecular machine and the molecular machine simu-
lates the synchronous reference machine.

Given a set of switchesS and a policyτ , we initialize the
molecular machine as follows:

Init(S, τ) = {∣C (τ ∣ ∅) ∣} ⊎ {∣S (s ∣ C (s, τ) ∣ ∅) ∣ s ∈ S∣} .
The next theorem establishes the relationship between the reference
and molecular machines.

Theorem 1(Functional Correctness). Given a set of switchesS, an
initial set of transmissionsT such thatT (s ∣ p) ∈ T impliess ∈ S,
and a molecular machineM = Init(S, τ) ⊎ T, we have:

• The asynchronous machine(τ,∅,T,∅) weakly simulatesM .
• M weakly simulates the synchronous machine(τ,∅,T).

Proof sketch.We describe the first simulation only; the second is
similar. The simulation relation between the asynchronous machine
and the molecular machine satisfies the following: (1) each switch’s
classifier on the molecular machine is sound with respect toτ , (2)
there exists an observation-preserving bijection between pending
transmissions in the asynchronous machine and transmissions and
help molecules in the molecular machine, and (3) there exists an
observation–preserving bijection between the processed transmis-
sions in the asynchronous machine and the switch states in the
molecular machine. The initial state satisfies these criteria by clas-
sifier generation soundness. Now, consider taking a transition. If it
forwards a packet, the first bijection is preserved by routing cor-
rectness; if it collects a pattern, the second bijection is preserved by
collection soundness; finally, if it generates reactive rules, they are
sound by specialization soundness.

Quiescence. The quiescence theorem demonstrates that the Net-
Core compiler effectively moves work off of the controller and onto
switches, even when the program is expressed in terms of patterns
the switch cannot implement precisely and inspector functions the
compiler cannot analyze. Formally, quiescence states that if all of
the inspectors in the program are invariant, then the NetCore com-
piler will eventually install rules on switches that handle all future
traffic—i.e., eventually, the system can reach a configuration where
no additional packets need to be sent to the controller.

Before we can state the quiescence theorem precisely, we need
a few definitions and supporting lemmas. First, we say thatM
is derived from policyτ if (Init(S, τ) ⊎ T) →∗ M, where→∗

is the reflexive, transitive closure of the single step judgement,
ignoring observations. Second, we lift the notion of full invariance
to machinesM; M is fully invariant if the controller’s policy is
fully invariant with respect to the controller’s state. We also lift
the notion ofcontroller seton classifiers to machinesM:

Ω(M) = {(s, p) ∣ S (s ∣ r⃗ ∣ Z) ∈ M andp ∈ Ω(r⃗)} .
The first lemma,controller set monotonicity, states that the set of
packets that require processing on the controller never increases:

Lemma 5 (Controller Set Monotonicity). If M is derived fromτ

andM
o
Ð→ M′, thenΩ(M′) ⊆ Ω(M).

Proof. Follows from specialization monotonicity.

Now we are ready to prove the key lemma needed for quies-
cence. Thecontroller set progresslemma states that if the con-
troller program is realizable and has become fully invariant, then
every time the controller processes a help molecule, the controller
set becomes strictly smaller. In other words, every help molecule
contains enough information (and the compiler is powerful enough
to exploit it) for the E-CONTROLLER rule to generate useful new
classifier rules.

Lemma 6 (Controller Set Progress). For every realizable policyτ
and fully invariantM derived fromτ , if M

o
Ð→ M′ is an instance of

E-CONTROLLER thenΩ(M′) ⊂ Ω(M).
Proof. Follows from specialization progress.

Quiescence follows from these lemmas, as the total number
of possible packets is finite. The precise statement of quiescence
says that the run-time systemmay (as opposed todoes) quiesce,
because the machine may non-deterministically choose to continue
forwarding packets using the switches instead of processing the
remaining help molecules. Formally, a machine configurationM
may quiesceif there exists a configurationM′ such thatM →∗ M′

and the rule E-CONTROLLER is not used in any derivation in
the operational semantics starting fromM′. With this definition in
hand, we can state quiescence.

Theorem 2 (Quiescence). For every realizable policyτ and fully
invariantM derived fromτ , we have thatM may quiesce.

7. Implementation and Evaluation
We have implemented a prototype NetCore compiler in Haskell us-
ing the ideas presented in this paper. The core algorithms are for-
mulated in terms of abstract type classes (e.g., lattices for switch
patterns) and oracles. This makes it easy to instantiate the com-
piler for different switch architectures—one simply has to define
instances for a few type classes and provide the appropriate oracles.
We have built two back-ends, both targeting OpenFlow switches.
The first generates coarse-grained wildcard rules. The other back-
end, used for comparison, generates the kind of exact-match rules
used in our earlier work on Frenetic [9] and most hand-written
NOX applications [11].

Optimizations. The implementation uses a number of heuristic
optimizations to avoid the combinatorial blowup that would result
from compiling classifiers naively. For example, it applies algebraic
rewritings on-the-fly to remove useless patterns and rules and re-
duce the size of the intermediate patterns and classifiers it needs to
manipulate. The compilation algorithms identify and remove pat-
terns completely “shadowed” by other patterns and patterns whose
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Full Compiler
Switch Misses 0 7.5k 4.5k
Classifier Size 8 15.9k 0.3k

µFlow Compiler
Switch Misses 13.7k 13.7k 33.4k
Classifier Size 13.7k 13.7k 29.2k

Figure 8. Experimental results.

effect is “covered” by a larger pattern with lower priority but the
same actions. Although these heuristics are simple, they go a long
way toward ensuring reasonable performance in our experience.

Evaluation. To evaluate our implementation, we built an instru-
mented version of the run-time system that collects statistics about
the sizes of the classifiers generated by the compiler and the amount
of traffic handled on switches (as opposed to the controller). Be-
cause space for classifiers is a limited resource on switches, and
because the cost of diverting a packet to the controller slows down
its processing by orders of magnitude, these metrics quantify some
of the most critical performance aspects of the system.

We compared the performance of the “full” (which makes use
of all OpenFlow rules, including wildcards) and “µflow” (which
only generates exact-match rules, also known asmicroflow rules)
compilers on the following programs:

• Static Policy Experiment (SPE): implements the simple static
policy described at the beginning of Section 2. This benchmark
measures the (in)efficiency of compilation strategies based on
generating exact-match rules.

• Static Policy with Query Experiment (SPQE): forwards
packets using the same policy as in SPE but also collects traf-
fic statistics for each host. Due to this collection, this program
cannot be directly compiled to a switch classifier—at least,
not without expanding all4.3 billion possible hosts! Thus, this
benchmark measures the efficiency of reactive specialization.

• Inspector Policy Experiment (IPE): forwards packets and col-
lects traffic statistics using the authentication application pre-
sented in Section 2. This benchmark measures the performance
of a more realistic application implemented using inspectors.

To drive these experiments, we generated packets usingfs [22], a
tool that synthesizes realistic packet traces from several statistical
parameters. We ran each experiment on 100K packets in total. For
the SPE and SPQE benchmarks, we generated traffic with 1024 ac-
tive hosts sending packets to an external network for 30 seconds
each. For the IPE benchmark, we generated traffic with 254 hosts
(a class C network) sending traffic to the authentication server and
an external network for 30 seconds each. The results of the exper-
iments are shown in Figure 8. The graphs on the top row show the
number of packets that “missed” and had to be sent to the controller
against the total number of packets processed. Likewise, the graphs
on the bottom row show the size of the compiled classifier, in terms
of number of rules, versus total packets. The table at the right gives
the final results after all 100K packets were processed.

In terms of the proportion of packets processed on switches,
the full OpenFlow compiler outperforms the microflow-based com-

piler on nearly all of the benchmarks. On the SPE benchmark,
the full compiler generates a classifier that completely handles the
policy, so no packets are sent to the controller. (The line for the
full compiler overlaps with the x-axis.) The microflow compiler,
of course, diverts a packet to the controller for each distinct mi-
croflow, generating 13.7k rules in total. On the SPQE benchmark,
the full compiler generates wildcard rules (using reactive special-
ization) that handle all future traffic from each unique host after
seeing a packet from it. These rules handle many more packets than
the exact-match rule produced by the microflow compiler. On this
benchmark, it is worth noting that the classifiers produced by the
full compiler are larger than the ones produced by the microflow
compiler, especially initially. This is due to the fact that the full
compiler generates multiple rules in response to a single controller
packet, attempting to cover a broad space of future similar pack-
ets, whereas the microflow compiler predictably generates a single
microflow for each controller packet. One can see that the work
done by the full compiler pays off in terms of the number of pack-
ets that must be diverted to the controller. Moreover, over time, the
size of the microflow compiler-generated classifier approaches that
of the full compiler. Lastly, the IPE benchmark demonstrates that
the full compiler generates more effective classifiers than the mi-
croflow compiler, even in the presence of inspector functions that it
cannot analyze directly. Note that a large number of packets must
be diverted to the controller in any correct implementation—until
they authenticate, the inspector is not invariant for any host. How-
ever, the full compiler quickly converges to a classifier that pro-
cesses all traffic directly on the switch.

8. Related Work
Building on ideas first proposed in Ethane [4] and 4D [10],
NOX [11] was the first concrete system to popularize what is cur-
rently known as software-defined networking. It provides an event-
driven interface to OpenFlow [17] and requires that programmers
write reactive programs using callbacks and explicit, switch-level
packet-processing rules. There are numerous examples of network
applications built on top of NOX using microflows [12, 13, 27],
but relatively few that use wildcard rules (though Wang’s load bal-
ancer [26] is a nice example of the latter).

Networking researchers are now actively developing next-
generation controller platforms. Some of them, such as Beacon [1]
(designed for Java) and Nettle [25] (designed for Haskell) pro-
vide elegant OpenFlow interfaces for new programming languages.
Others, such as Onix [15], and Maestro [3] improve scalability and
fault tolerance through parallelization and distribution. None of



these systems automatically generate reactive protocols or provide
formal semantics or correctness guarantees like NetCore does.

Both NetCore and NDLog [16] use high-level languages to pro-
gram networking infrastructure, but the similarities end there. ND-
Log programs are written in an explicitly distributed style whereas
high-level NetCore programs are written as if the program has an
omniscient, centralized view of the entire network. The NetCore
implementation automatically partitions work onto a distributed set
of switches and synthesizes a reactive communication protocol that
simulates the semantics of the high-level language.

Part of the job of the NetCore compiler is to generate efficient
packet classifiers. Most previous research in this area (see Tay-
lor [24] for a survey) focuses on static compilation. The NetCore
compiler generates classifiers in the face of non-static policies, with
unknown inspector functions, and synthesizes a distributed switch-
controller implementation. Bro [21], Snortran [7], Shangri-La [5]
and FPL-3E [6] compile rich packet-filtering and monitoring pro-
grams, designed to secure networks and detect intrusions, down to
special packet-processing hardware and FPGAs. The main differ-
ence between NetCore and all of these systems is that they are lim-
ited to a single device. They do not address the issue of how to pro-
gram complex, dynamic policies for a collection of interconnected
switches and they do not synthesize the distributed communication
patterns between the switches and controller.

Active Networking, as in the SwitchWare project [23], shares
many high-level goals with Software-Defined Networking, but the
implementation strategy is entirely different. The former uses smart
switches to interpret programs encapsulated in packets, while the
latter uses dumb switches controlled by a remote host.
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